
Download free eBooks at bookboon.com

Go Faster!

241

Part IV: Conclusion

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

242

The Future Looks Bright Ahead

15 The Future Looks Bright Ahead

15.1 Introduction

he goal of this book has been to present a tutorial on the TransRelational Model (the TR model, also referred to herein

as TR technology, or just TR for short). As explained in the preface, the TR model represents one speciic but important

application of a more general technology called the Tarin Transform Method; that more general technology is suitable for

building data management systems of many diferent kinds, but I’ve deliberately concentrated in this book on its suitability

for implementing the relational model in particular. Now, in this inal chapter, I want to summarize and analyze the main

points from what’s gone before—especially with respect to the beneits that this exciting new technology can provide—and

I also want to speculate a little as to what might lie ahead.

15.2 The TR Model Summarized

Everything I’ve said about the TR model in this book so far has been based on Required Technologies documentation

(the Initial Patent [63] in particular). However, I need to make it clear that I’ve altered most of the terms, I’ve simpliied

many of the concepts (and even omitted a few), and I’ve imposed my own sequence on the material—always in the hope

of making what I think are the really important ideas more readily understandable. Also, the strict stratiication into three

layers of abstraction described in Chapter 3 (and adhered to throughout the present book) isn’t explicitly called out in the

Required Technologies documents, and the same is true for some of the techniques sketched in Chapter 10 and elsewhere

for implementing the relational operators.

Data Independence

TR is a transform technology. he notion of a transform (as that term is used in the TR context) is a logical consequence

of the familiar notion of data independence: It should be possible to change the way the data is physically stored without

having to change the way the data looks to the user. his objective clearly implies the need for at least one transform—more

generally, for a set of N transforms for some N greater than zero—to be performed between the external and internal

levels of the system. he trouble is, today’s direct-image systems provide only a very weak form of data independence

(I’m tempted to say they implement the identity transform). As a consequence, we’ve come to think of data independence

as little more than just shielding the user from the bits and bytes on the disk. But there’s so much more to it than that!

We need to get away from those direct-image transforms. And that’s what TR is all about; TR is, I think, unique in the

emphasis it places on the crucial concept of data independence. Every part of the TR model as described in earlier chapters

its naturally within, and contributes to, this overall perspective on the database implementation problem.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

243

The Future Looks Bright Ahead

Let me illustrate the foregoing by briely reviewing the material from those earlier chapters. I began in Chapter 3 by

distinguishing three levels of abstraction—the user level, which is relational; the TR level, which is based on TR tables

(principally the Field Values Table and the Record Reconstruction Table); and the ile level, which is a level of indirection

between the other two. (hus, we’re already talking about at least two transforms, one between relations and iles, and

one between iles and TR tables.) Relations have tuples and attributes; iles have records and ields; tables have rows and

columns. I stressed the point that TR tables are deinitely not the same thing as SQL tables, and I explained at some length

why I thought it was better to use relational terminology, not SQL terminology, at the user level. Indeed, I think it’s fair

to say that one problem with SQL—one of many, unfortunately—is precisely that it muddies the distinction between the

relational and ile levels; in some ways, in fact, SQL tends to focus on the ile level more than it does on the relational level.

Be that as it may, the crucial insight underlying the TR model is this. Let r be some record at the ile level. hen:

he stored form of r involves two logically distinct pieces, a set of ield values and a set of “linkage”

information that ties those ield values together, and there’s a wide range of possibilities for physically

storing each piece.

In direct-image systems, the two pieces are kept together, and the linkage information is represented by physical contiguity.

In TR, by contrast, the two pieces are kept separate; the ield values are kept in the Field Values Table, and the linkage

information is kept in the Record Reconstruction Table. hat separation (which represents a major logical transform right

away, of course) efectively allows the very same stored data to be kept sorted in many diferent ways at the same time. It’s

rather like having many diferent pointer chains running through the same set of stored data at the same time; however,

the big diference is that, in TR, (a) those pointer chains are separate from the stored data as such, and (b) they efectively

connect ields, not records (contrast pointer chains as found in CODASYL systems, as described in Chapter 2). Also, we

saw in Chapter 14 that those “chains” of pointers aren’t necessarily chains anyway, in TR.

Memory Implementation

In Chapters 4-10, I presented the basic ideas of the TR model while ignoring (for the most part) the special problems of

implementing that model on disk, and I’ll follow the same pattern in this brief review. First of all, then, let’s go over the way

the Field Values Table and Record Reconstruction Table might be implemented in memory (for full details, see Chapter 4).

In its simplest form, the Field Values Table has a column for each ield in the corresponding ile, and the entries in a given

column consist of the ield values from the corresponding column arranged into sorted order. Let cfv and crr denote cell

[i,j] of the Field Values Table and cell [i,j] of the Record Reconstruction Table, respectively. Let r be that record of the ile

whose jth ield value appears in cfv, and let the (j+1)st ield value of r appear in cell [i',j+1] of the Field Values Table. hen

crr contains i'. hus, the Record Reconstruction Table allows any or all of the records in the ile to be reconstructed—by

means of the zigzag algorithm—from the Field Values Table. Moreover, entering the Record Reconstruction Table on

any particular column j and reconstructing the record corresponding to cell [1,j], then the record corresponding to cell

[2,j], and so on, will eventually reconstruct a version of the ile whose records are ordered by values of ield j.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

244

The Future Looks Bright Ahead

Let me remind you that the Field Values Table and the Record Reconstruction Table both start out being isomorphic to

the corresponding ile—that is, they both have the same number of rows and columns as that ile has records and ields,

respectively. What’s more, the Record Reconstruction Table stays isomorphic in this sense; however, the Field Values Table

ceases to do so when the condensed- and merged-column transforms are introduced (see below). Let me also remind

you that the Field Values Table is the only TR-level construct that contains user data as such; all the rest—the Record

Reconstruction Table, also the Permutation Table and others—contain implementation information (mostly pointers).

Finally, let me remind you that those pointers can usefully be thought of surrogates for the corresponding ield values.

In Chapter 5, I briely discussed what’s involved in inserting new records and in retrieving, deleting, or updating the

records that “pass through” some given cell of the Record Reconstruction Table. I explained how DELETE didn’t physically

remove information from the database but merely lagged it as “logically deleted,” and how subsequent INSERTs could then

reuse such logically deleted items. I pointed out that inding records and retrieving them (or deleting or updating them)

were logically distinct processes, and I explained how TR took advantage of that fact. And I explained how all of these

operations efectively took place at the ield level rather than the record level. I also discussed “symmetric exploitation” and

the possibility of corresponding symmetry of performance (but that’s an issue I want to come back to in the next section).

In Chapter 6, I discussed update operations in more depth. In particular, I explained the swap algorithm for implementing

INSERT operations; I also sketched an alternative approach based on the use of a separate overlow structure, and pointed

out that such an approach enjoyed many advantages (not only in the area of performance but also, and importantly, in the

area of backup and recovery). Note: Yet again we’re talking about some important transforms. I won’t keep on saying this.

Next, recall that the Record Reconstruction Table corresponding to a given ile (and given Field Values Table) isn’t unique,

in general, owing to the fact that most ields in most iles involve duplicate values. In Chapter 7, I showed how we can

take advantage of this fact; to be speciic, I showed how certain “preferred” Record Reconstruction Tables could be used

to provide several major-to-minor orderings simultaneously (as well as, a fortiori, several individual ield orderings

simultaneously). And I also showed in that chapter (as well as in Chapters 5 and 7) how to use the Permutation and

Inverse Permutation Tables as a basis for building any desired Record Reconstruction Table, “preferred” or otherwise.

“Preferred” Record Reconstruction Tables constitute one of several important reinements to the basic TR model; although

those reinements might be thought of as frills, in a sense, they’re so important and useful that (it seems to me) they’re

virtually certain to be supported in any real implementation.

In Chapter 8, I took a look at another important reinement, condensed columns. he idea here is that columns in the

Field Values Table can be “condensed” by removing redundant duplicate ield values (keeping instead, with each individual

ield value that remains, a row range indicating which rows would have contained that value in the corresponding

uncondensed version of the Field Values Table). As well as representing a possibly dramatic saving in storage space (see

the subsection entitled “he Copernican Analogy” in the next section), condensed columns make update operations

(and retrieval operations too, quite probably) much more eicient. I remind you that a condensed column can usefully

be thought of as a histogram.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

245

The Future Looks Bright Ahead

Of course, condensing the Field Values Table in the foregoing sense does make ile and record reconstruction a little

more complicated, and possibly a little less eicient. We can ix this problem by expanding the Record Reconstruction

Table, such that each cell now includes two pointers (that is, two row numbers) instead of one. One pointer is the same

as before—it identiies the appropriate “next” cell in the Record Reconstruction Table—while the other is a direct pointer

to the cell of the Field Values Table that contains the corresponding ield value.

In Chapter 9, I discussed yet another important reinement, merged columns. he idea here is that distinct ields at the

ile level might map to the same column in the Field Values Table, eliminating further redundancy, and in particular

making joins more eicient. What’s more, the distinct ields in question don’t have to come from the same ile—the only

requirement is that they must be of the same data type; thus, there’s no longer necessarily a one-to-one correspondence

between iles at the ile level and Field Values Tables at the TR level (note the implications here for candidate and foreign

keys in particular). In the extreme case, in fact, there could be just a single Field Values Table for the entire database. In

relational terms, such an implementation would efectively mean that we were storing attributes instead of tuples (and

those stored attributes would never contain any duplicate values).

Note: In characterizing such an implementation in such a manner, I’m tacitly regarding (for example) attribute S# in the

suppliers relation S and attribute S# in the shipments relation SPJ as “the same” attribute. his interpretation is consistent

with the formal deinition of the term attribute as found in, for example, reference [40]. What’s more, since it’s even possible

for that single Field Values Table to include “logically deleted” values that don’t currently appear in any user relation at

all, such an implementation might reasonably be characterized as one—or as approaching one—that stores domains (=

types), not just attributes.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Go Faster!

246

The Future Looks Bright Ahead

Next, in Chapter 10, I indicated what was involved in using TR to implement the relational operators, and gave evidence

to support the claim that those implementations should be especially eicient. Joins in particular involve linear costs

instead of multiplicative ones; in my opinion, this fact by itself—even if it was the only advantage provided by TR—would

still be more than suicient to place TR head and shoulders above its competitors. Note in particular that it implies that

joins are scalable;1 as a consequence, if some query fundamentally requires N joins, then it’s all right to go ahead and

request those N joins, regardless of the value of N. By contrast, it’s well known that direct-image implementations are

efectively incapable of handling values of N that are greater than some fairly small lower bound (perhaps seven or eight).

Yet a properly designed database could easily have several hundred relations, and realistic queries could easily involve a

20- or 30-way join.

Disk Implementation

In Chapters 11-14, I turned my attention to the question of implementing the TR model on disk. In Chapter 11, I

explained the basic problem: We need to do everything we can to minimize disk seeks. More speciically, we want as much

of the database as possible to be memory-resident at run time, and we want a good data representation on disk to reduce

the amount of seeking we have to do when we do have to do it. he overall objective is to try and get “main-memory

performance of the disk.”

Chapter 11 also described some of the logical and physical compression techniques that TR uses to address the foregoing

problems. Note in particular that (at least to a irst approximation) those techniques have the efect of ensuring that the

Field Values Table will always be memory-resident. But the Record Reconstruction Table has the potential to be much

larger than the Field Values Table and therefore still presents a problem. Chapter 11 included an overview of certain

TR-speciic approaches to that problem, while the next three chapters described three of those TR-speciic solutions in

more detail. Chapter 12 explained the use of ile factoring to reduce the problem to one of dealing efectively with “large

iles.” Chapters 13 and 14 then addressed this latter problem in detail; Chapter 13 discussed the use of ile banding, and

Chapter 14 examined the possibility of using stars instead of zigzags in the Record Reconstruction Table. Chapters 13

and 14 also raised the possibility of judicious use of controlled redundancy.

Let me conclude this brief summary by reminding you that, despite its comparatively low-level nature, TR is still an

abstract model, and is accordingly capable of many diferent physical implementations. Several physical implementation

alternatives were touched on at various points in previous chapters.

15.3 Analysis

Clearly, TR difers radically from conventional direct-image approaches to implementation; to say it one more time, it’s

a transform technology, not a direct-image one. In this section, I want to describe in outline a variety of ways in which

TR’s transform technology might reasonably be characterized. he ways in question are all ones that I think can help

explain the fundamental signiicance of the transform idea and can provide some insight, at least by analogy, into what

TR is really all about.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

247

The Future Looks Bright Ahead

he Logarithm Analogy

he irst analogy is with logarithms (I mentioned this one briely in Chapter 1). he idea is that, in a sense, TR’s transform

technology does for database processing what logarithms do for numeric processing. As I put it in Chapter 1:

[Logarithms] allow what would otherwise be complicated, tedious, and time-consuming numeric problems

to be solved by transforming them into vastly simpler but (in a sense) equivalent problems and solving those

simpler problems instead ... [and] TR does the same kind of thing for data management problems.

—from Chapter 1

Let’s think about logarithms for a moment. We all know the pragmatic diiculties involved in carrying out typical arithmetic

operations on large numbers:

here is nothing more troublesome in mathematics than the multiplications, divisions, square and cubic root

extractions of great numbers, which involve a tedious expenditure of time, as well as being subject to “slippery

errors.”

(hese remarks are due to John Napier, the inventor of logarithms. he quote is from Jan Gullberg’s book Mathematics:

From the Birth of Numbers, W. W. Norton and Company, 1977.) Before Napier came along, such “multiplications, divisions,

[and] ... root extractions” were, at best, hugely labor-intensive and time-consuming; at worst, they couldn’t be done at all,

because the amount of time required was prohibitive. (Does this sound familiar?)

Logarithms solved this problem. As already noted in the quote from Chapter 1, they did so by means of certain transforms:

hey allowed the objects of interest (numbers) to be transformed into a new—and incidentally unfamiliar—representation;

that transform then allowed the operators of interest (multiply, divide, etc.) to be transformed into other, more familiar

and much simpler, operators (add, subtract, etc.). For example, suppose we need to multiply two large numbers x and y.

hen we proceed as follows:

1. First, we transform the numbers x and y into their logarithms x' and y', say. hese transforms are done by

looking the logarithms up in a precomputed table.

2. Next, we transform the operation of multiplying the two numbers into the much easier one of adding their

logarithms x'and y', thereby obtaining a result z' say.

3. Finally, we transform z' into the desired result z by looking up the antilogarithm of z' in another

precomputed table.

Not only do the foregoing transforms make the problem much easier to solve, they also drastically reduce the amount of

time involved—from multiplicative time to additive or linear time, in fact. (Again, does this sound familiar?)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

248

The Future Looks Bright Ahead

Now let’s get back to TR. TR also transforms the objects of interest—in this case, data iles—into a new and unfamiliar

representation, the Field Values and Record Reconstruction Tables. And then it transforms the operators of interest (value

lookups and sequential searches) into more familiar and much more eicient operators, such as binary search, on those

tables. he net efect, as with logarithms, is that:

•	 Problems that were diicult and excessively time-consuming with the traditional approach become easy and

fast with the new approach.

•	 Problems that were efectively intractable with the traditional approach become feasible with the new

approach.

•	 More generally, problems that required multiplicative time with the traditional approach require only linear

time with the new approach, and problems that required linear time with the traditional approach require

only logarithmic time with the new approach.

here’s one more point to be made. With both logarithms and TR technology, all of the “heavy liting” is done just

once, in advance. In the case of logarithms, the lookup tables are precomputed; that is, the work of computing the actual

logarithms and antilogarithms is done once, ahead of time, instead of being repeated over and over again every time we

want to do some numeric calculation. In the same kind of way, with TR, the Field Values and Record Reconstruction Tables

are also precomputed (at load time, in fact); that is, all of the data sorting and merging is done ahead of time, instead of

over and over again every time we want to access the database (when executing some query, for example). And in both

cases, doing the “heavy liting” just once in advance translates into overwhelming cost beneits.2

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Go Faster!

249

The Future Looks Bright Ahead

he Copernican Analogy

here’s another analogy that I think is helpful, too, and that’s with the Copernican revolution—that is, the conceptual

shit from the view in which the sun (and everything else) revolved around the earth to one in which the earth revolved

around the sun instead.3 As we all know, the perception that the sun revolves around the earth makes a kind of intuitive

sense (and might even be defended, to some extent, on relativistic grounds), but it’s certainly misleading if you want to

understand the bigger picture. Well, in the same kind of way, the perception that relations consist primarily of tuples, and

that those tuples then only secondarily contain individual data values, also makes sense—indeed, it’s logically correct—but,

again, it can be misleading if you want to understand the bigger picture.

Part of the problem here lies with books like this one. When such books show relations in pictorial form (that is, as SQL-

style tables), for obvious reasons they always use examples that involve very few tuples (see any of the examples in the

present book). As a consequence, the pictures in question always look like nice neat little rectangles, and the tuples and

the attributes “carry equal weight,” as it were. But relations in real databases aren’t like that—at least, not usually; more

usually, such relations involve comparatively few attributes but several millions or even billions of tuples, and the true

picture becomes very long and skinny, almost more like a long thin piece of string than a “nice neat little rectangle.” (Even

with nice neat little rectangles, in fact, it’s oten psychologically easier to read down the columns rather than across the

rows, a state of afairs that I think lends weight to the present argument.)

If we think of relations in this way, it becomes clear that it’s the attributes, not the tuples, that are the real implementation

problem; for example, we need to worry much more about how to search down the attributes than we do about how

to search across the tuples. In other words, we need to make a conceptual shit from a tuple-oriented to an attribute-

oriented point of view. Making that shit is, in a way, what the TR approach does: First, we break the records up into

their constituent ields and sort the data by each ield individually (of course, now I’m talking about the ile analog of

the relation in question), and only later do we worry about connecting the ield values back together again to form the

corresponding records. As we know, this approach is the exact opposite of the traditional direct-image approach, in which

the records aren’t broken up at all but are kept connected by physical contiguity. hus, in the direct-image approach, the

records are necessarily kept sorted in just one sort order, and redundant auxiliary structures then have to be introduced

in order to obtain the efect of sorting the ields individually.

As we also know, it’s this shit in perspective that allows us to introduce additional important techniques such as condensed

and merged columns. (In this connection, I’d like to remind you in particular of the huge amount of data compression

that those techniques make possible—recall the example from Chapter 8 of a relation representing drivers’ licenses, where

we had 20 million tuples but only ten diferent hair colors, perhaps.)

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

250

The Future Looks Bright Ahead

In a nutshell, the shit from a tuple- to an attribute-oriented point of view, like the shit aforded by the Copernican

revolution, shows how things “really” it together behind the scenes: In both cases, it’s the “right” way to think about the

problem, and it’s the key to the “right” solution. What’s more, the shit has surprisingly deep and powerful implications

in both cases, implications that go far beyond the initial simple recognition of the shit as such to a truly fundamental

conceptual transformation underneath the surface. In the case of TR in particular, that conceptual transformation seems to

me to be the breakthrough that’s needed in order to “do relational databases right”; instead of making comparatively small

and incremental improvements, which is what database administrators, DBMS implementers, and database researchers

have been doing for years, we can take a totally fresh approach to the problem, one that (as we’ve seen) provides huge

performance—and other—beneits.

TR vs. Indexing

Now I want to say more about those redundant auxiliary structures; in particular, I want to say more about indexes. We’ve

seen that TR does away with the need for indexes. Or does it? In what follows, I’d like to examine this question from a

slightly diferent point of view.

Consider Fig. 15.1 (essentially a repeat of Fig. 4.1 from Chapter 4), which shows a possible ile for suppliers, and Fig.

15.2, which shows a corresponding Permutation Table. Just to remind you, column S# in this latter table contains “the S#

permutation”—that is, it shows that sorting the ile of Fig. 15.1 by ascending supplier number returns the records in the

sequence 4, 3, 5, 1, 2—and similarly for the other columns.

Fig. 15.1: A suppliers ile

Fig. 15.2: A Permutation Table corresponding to the ile of Fig. 15.1

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

251

The Future Looks Bright Ahead

Observe now that the S# permutation is an index, in a sense!—at least, it does provide the functionality of a conventional

index.4 And, of course, analogous remarks apply to the other permutations, too. Given that the permutation notion plays

such a crucial role in TR, therefore, we might say, not that TR dispenses with indexes, but rather that indexes are essential. In

fact, we might quite reasonably say that the TR internal structures—the Field Values Table and the Record Reconstruction

Table—are obtained by building indexes on everything, connecting all of those indexes together (but storing the ield

values and the linkage information separately), and then throwing away the indexed ile.

Of course, it’s reasonable to talk in the way I’ve just been doing only if we have a very clear idea of what we really mean.

Certainly TR does dispense with indexes as conventionally understood (and so it also dispenses with all of those undesirable

consequences of such indexes as described in Chapter 2). Ater all, TR clearly does away with the notion of the stored ile

as a direct image of a user-level relation; it therefore also a fortiori does away with the notion of there being a distinction

between such a ile, on the one hand, and indexes over such a ile, on the other. hus, in the very act of doing away with

the direct-image ile, TR also does away with the idea of an index that points into such a ile, which includes most or all

of indexing as conventionally understood—and so I stand by my claim that TR abolishes the need for indexing in the

conventional sense. Yet this abolition of indexing in the conventional sense is efectively accomplished by absorbing the

functionality of such indexing into TR’s own internal structures.

EXPERIENCE THE POWER OF

FULL ENGAGEMENT…

 RUN FASTER.

 RUN LONGER..

 RUN EASIER…

READ MORE & PRE-ORDER TODAY

WWW.GAITEYE.COM

Challenge the way we run

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Go Faster!

252

The Future Looks Bright Ahead

I’d like to expand a little on the foregoing. Conventional DBMSs involve a whole host of extremely diicult performance

questions, some of which have to be answered by the database administrator (for example, “Which indexes should I

build?”) and some by the system optimizer (for example, “Which indexes should I use?”). And how those questions are

answered typically has huge implications for system performance—meaning there are huge penalties to pay if the answers

are wrong. Now, TR doesn’t do away with such questions altogether, but it certainly does do away with many of them.

And those questions that remain tend to be much easier to answer, and to have far less drastic performance implications,

than their counterparts in conventional systems. In many cases, in fact, the implementation can probably answer the

question for itself, or at least provide some sensible default answer; for example, user-level attributes of the same type

might automatically cause a corresponding merged column to be built in the Field Values Table at the TR level. Automating

decisions in this manner can obviously help to reduce the load on the database administrator still further. However, there

will doubtless always be a need for some kind of “manual override” in certain situations.5

TR and Hyperplanes

he inal characterization of TR that I want to discuss here is one you might ind appealing if you happen to be

mathematically inclined. Recall these remarks from Chapter 2:

[A] relation can ... be pictured as a table. However, a relation is not a table. A picture of a thing isn’t the same

as the thing! In fact, the diference between a thing and a picture of that thing is another of the great logical

diferences ..

—from Chapter 2

Although these remarks are undoubtedly true, it’s also true that it can oten be very convenient, informally, to think of a

relation as a table. Tables are “user-friendly”; the fact that we can oten think of relations, informally, as tables—sometimes

more explicitly as “lat” or “two-dimensional” tables—makes relational systems intuitively easy to understand and use, and

makes it intuitively easy to reason about the way such systems behave. Indeed, it’s a very nice property of the relational

model that its basic data structure, the relation, has such an intuitively attractive pictorial representation.

Unfortunately, many people have let themselves be blinded by that attractive pictorial representation into thinking that

relations as such are “lat” or “two-dimensional.” Perhaps even more unfortunately, this criticism has historically applied

to DBMS implementers in particular—a fact that presumably accounts for the conventional direct-image approach to

implementation found in most SQL systems on the market today. Indeed, we might quite reasonably characterize those

direct-image implementations as “lat” or “two-dimensional,” and we already know from Chapter 2 the problems that

such implementations lead to.

But, in general, relations simply aren’t two-dimensional. Rather, if a given relation has N attributes, then each tuple in that

relation represents a point in a certain N-dimensional space—and the relation as a whole represents a set of such points. In

other words, relations are N-dimensional, not two-dimensional! As I’ve written elsewhere (in quite a few places, in fact):

Let’s all vow never to say “lat relations” ever again.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

253

The Future Looks Bright Ahead

Let’s agree to refer to the points in a given N-dimensional space as “N-points,” for brevity. hen the overall database can

be regarded as a collection of such N-points. Of course, N will have diferent values for diferent points in the database,

in general; and even when two points do have the same value for N, the points in question might be based on diferent

dimensions. For example, the suppliers relation S and the shipments relation SPJ both contain tuples representing,

speciically, 4-points; however, the underlying dimensions are S#, NAME, INTEGER, and CHAR in the case of suppliers,

and S#, P#, J#, and INTEGER in the case of shipments.

Now let’s focus for a moment on just one of those 4-points: let’s say the 4-point representing the shipment for supplier S1,

part P1, and project J1, with quantity 200. Consider some particular attribute value within that shipment tuple, say the

supplier number S1. he TR representation of that attribute value involves a cell in the Field Values Table, and of course

that cell is directly linked, via an appropriate zigzag or star, to the TR representations of all other attribute values from the

same shipment tuple. What’s more—thanks to the condensed-columns technique described in Chapter 8—it’s also directly

linked, via other zigzags or stars, to the TR representations of all other attribute values in all other shipment tuples with the

same supplier number. In other words, all shipment 4-points with “the same S# coordinate” (if I might be allowed to talk

in such terms) are directly linked together at the TR level. And, of course, the same is true for all shipment 4-points with

the same P# coordinate, or the same J# coordinate, or the same QTY coordinate. In this sense, the TR representation of

any given relation can reasonably be regarded as being directly N-dimensional: All “points” (that is, all tuples) in that

relation that belong to the same “hyperplane” (see the next paragraph but one) are directly connected together at the TR

level. By contrast, conventional direct-image implementations—precisely because they are direct-image and thus very

close to the picture the user sees—can be regarded as being two-dimensional; to be speciic, distinct points from the same

hyperplane in such an implementation are represented independently of one another, and the connections among them

therefore have to be explicitly represented by independent auxiliary structures such as indexes.

here’s more. hanks to the merged-columns technique described in Chapter 9, all shipment 4-points with a given S#

coordinate can also be directly linked at the TR level to the (unique) supplier 4-point with the same S# coordinate. In

fact, if we take the merged-columns idea to its logical conclusion, in which there’s just one Field Values Table for the

entire database, then we can say that whenever two tuples are logically connected at the relational level (because they have

some attribute value in common), then their internal representations are directly linked at the TR level. In such a situation,

TR can be regarded as providing a directly N-dimensional representation of the entire database. And, of course, it’s

that N-dimensional representation that (among other things) allows joins to be done in linear time, as we’ve already seen.

It’s also what allows both of the following tasks to be carried out eiciently: (a) Given a particular tuple, ind all of its

attribute values; (b) given a particular attribute value, ind all of the tuples that contain it (see Chapter 11, Section 11.2).

Note: In case you’re not familiar with the concept, let me explain what I mean by the term “hyperplane.” In ordinary

three-dimensional space, where points are identiied by three coordinates x, y, and z, the set of all points with the same

x-coordinate forms a plane (and likewise for the set of all points with the same y-coordinate or the same z-coordinate).

More generally, in any given N-dimensional space, the set of all points with some given coordinate in common forms a

hyperplane. hus, to say that two N-points belong to the same hyperplane is just a fancy way of saying they have some

common coordinate. Observe that any given N-point can be regarded as the intersection of N such hyperplanes (and the

database as a whole can thus be thought of as a collection of intersections of hyperplanes).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

254

The Future Looks Bright Ahead

15.4 A Review of the Beneits

In this section, I want to try and bring together in one place a summary of all of the many beneits I believe TR can

provide. Some of those beneits have been discussed previously, others are new. Note: I should explain right away—as I’ve

done elsewhere, in a somewhat similar context [34]—that the points that follow are all very much interwoven; sometimes

they’re even the same point in diferent guises. It’s always hard to structure this kind of material completely orthogonally.

Be that as it may, I’d like to begin by quoting some extracts from reference [63] and ofering some comments on those

extracts. he irst is, in part, a repeat of some text I quoted in Chapter 1:

he present invention provides a new and eicient way of structuring databases [that supports] eicient query

and update processing, [reduces] database storage requirements, and [simpliies] database organization and

maintenance. Rather than [achieving] orderedness through increasing redundancy (that is, superimposing

an ordered data representation on top of the original unordered representation of the same data), the present

invention achieves orderedness through eliminating redundancy on a fundamental level.

—from the Initial Patent

Comment: If you’ve managed to read the book this far, you should be in a position to understand exactly what’s being

claimed here and—I hope—agree with it.

— ◆ ◆ ◆ ◆ ◆ —

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Go Faster!

255

The Future Looks Bright Ahead

[Conventional implementation approaches] contain key structural weaknesses, including high levels of

unorderedness and redundancy, that have traditionally been regarded as unavoidable. For example, [data in

such implementations] can be sorted ... on at most one criterion ... his limitation renders essential database

functions such as querying ... on all criteria other than this privileged one ... awkward and overly resource-

intensive ...[It] obscures natural and exploitable latent data relationships that are revealed by more ordered,

condensed, and eicient data arrangements [and] leads to negative characteristics of state-of-the-art DBMSs

such as unorderedness, redundancy, cumbersomeness, algorithmic ineiciencies, and performance instabilities.

—from the Initial Patent

Comment: he “key structural weakness” of the irst sentence here is, of course, the conventional direct-image style of

implementation, in which user-level tuples map more or less directly to physically stored records (what I called in the

previous section a “lat” or “two-dimensional” representation). As the quoted extract suggests, that direct-image style

has simply been taken as a given in most prior work. he breakthrough represented by the TR approach implies that

numerous traditional assumptions underlying prior investigations into physical implementation are no longer valid.

he “more ordered, condensed, and eicient data arrangements” that TR technology makes possible are, of course, the

condensed and possibly merged Field Values Tables and the associated Record Reconstruction Tables.

Let me also ofer a few comments on those “negative characteristics of state-of-the-art DBMSs”:

•	 Unorderedness: his one’s obvious—the (unique) physical ordering of a conventional stored ile clearly

relects at most one sensible logical ordering, and possibly none at all.

•	 Redundancy: here are at least two points here. First, the auxiliary structures (typically indexes) that are

introduced to address the problem of unorderedness involve redundancy by deinition. Second, the fact that

column condensing and merging can’t be used in a direct-image implementation means that the very same

individual ield values are typically repeated many times (possibly very many times) in storage, both within

and across distinct stored iles.

•	 Cumbersomeness: he vast array of auxiliary structures supported in conventional DBMSs—all of which are

ad hoc to a degree—can certainly lead to cumbersome representations, representations that are diicult to

design in the irst place and can be diicult to change later, too. What’s more, the DBMS code itself, which

has to deal with all of these diferent representations, can be cumbersome and diicult to manage as well.

•	 Algorithmic ineiciencies: By way of example here, consider what’s involved in implementing joins or

aggregations in a TR system vs. what’s involved in doing the same thing in a conventional system (see

Chapter 10). he TR implementations are clearly much more eicient.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

256

The Future Looks Bright Ahead

•	 Performance instabilities: And by way of example here, consider the diference in a conventional DBMS

between doing a restriction operation when a suitable index exists vs. doing the same thing when it doesn’t.

Or consider the diference, again in a conventional DBMS, between doing a join when the stored versions

of the relations involved are suitably sorted ahead of time vs. doing the same thing when they aren’t. Again,

the TR implementations are clearly much more eicient, and questions such as “Does a suitable index exist?”

and “Is the data suitably sorted?” simply don’t arise.

— ◆ ◆ ◆ ◆ ◆ —

hese supplementary structures are inherently, and oten massively, redundant ... [and] typically grow to be

overly lengthy, convoluted, and ... cumbersome to maintain, optimize, and especially update.

—from the Initial Patent

Comment: he “supplementary structures” mentioned here are, of course, the auxiliary structures, typically indexes,

introduced as noted previously to overcome the problem of “unorderedness” in conventional DBMSs. “Cumbersome to

update”: As we saw in Chapter 2, indexes might perhaps speed up queries, but they certainly slow down updates—partly

because of the “inherent redundancies” also mentioned in the quote. Updates are faster in TR in part because there simply

aren’t any auxiliary structures to update.

— ◆ ◆ ◆ ◆ ◆ —

[Data in TR] is much more easily manipulated than in traditional databases, oten requiring only that certain

entries in the [Record Reconstruction Table] be changed, with no copying of data.

—from the Initial Patent

Comment: his extract refers primarily to the TR mechanism by which stored ield values can be shared across stored

records (see Chapters 8 and 9). Among other things, that mechanism allows the user to insert new tuples without new

attribute values having to be physically inserted, and it allows the user to delete existing tuples without existing attribute

values having to be physically deleted. In other words, “data manipulation” or update operations—meaning INSERT,

DELETE, and UPDATE operations, as discussed in Chapter 6—can be very eicient, too.

— ◆ ◆ ◆ ◆ ◆ —

[Certain] operations such as [histogram] analysis, data compression, and [obtaining a variety of distinct]

orderings, which are computationally intensive in [conventional DBMSs], are obtainable immediately from

the structures described herein. he invention also provides improved processing in parallel computing

environments.

—from the Initial Patent

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

257

The Future Looks Bright Ahead

Comment: he irst sentence here is self-explanatory. Regarding the second sentence, I did mention at the very end of

Chapter 3 that the TR tables are suitable for implementation in a multiprocessor environment, if such is available. he details

are beyond the scope of this book; however, reference [63] does include several suggestions as to how parallel processing

algorithms might be used to improve TR performance—for example, searches on columns of the Field Values Table might

well be parallelized, and the same is true for the sorts that are needed to build the Field Values Table in the irst place.

— ◆ ◆ ◆ ◆ ◆ —

Now let’s revisit some of the problems that I claimed in Chapter 2 come with the use of indexes and other conventional

auxiliary structures, and see in each case how TR overcomes those problems:

•	 DBMS implementation complexity: he complexity in question arises from the need for the DBMS to

deal with many diferent auxiliary structures and associated access methods, and in particular from the

consequent need for the optimizer to carry out the process of access path selection. he radical new TR

internal structures (primarily the Field Values Table and Record Reconstruction Table) address this problem

directly by eliminating unnecessary options at the physical level. For example, the optimizer doesn’t have to

decide whether or not to use an index, because there aren’t any indexes, and that’s because TR doesn’t need

any indexes (at least, not in the conventional sense—see the subsection entitled “TR vs. Indexing” in the

previous section).

•	 Stored data redundancy: See the discussion of redundancy earlier in this section. Note: As explained in

Chapters 13 and 14, controlled redundancy can have its uses. Of course, the kind of redundancy introduced

by indexes and other auxiliary structures is controlled too—but it isn’t necessary.

www.sylvania.com

We do not reinvent

the wheel we reinvent

light.
Fascinating lighting offers an ininite spectrum of

possibilities: Innovative technologies and new

markets provide both opportunities and challenges.

An environment in which your expertise is in high

demand. Enjoy the supportive working atmosphere

within our global group and beneit from international

career paths. Implement sustainable ideas in close

cooperation with other specialists and contribute to

inluencing our future. Come and join us in reinventing

light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Go Faster!

258

The Future Looks Bright Ahead

•	 Additional storage space requirements: Even if we limit our attention to the raw data alone and ignore

the additional storage space requirements of auxiliary structures, the TR representation needs far less

storage space than conventional structures (an 80 percent reduction is not atypical). In other words, the

TR representation—especially when columns are condensed and merged—can be thought of as a highly

compressed representation. What’s more, the compressions in question have the efect of speeding up access

as well as drastically reducing storage space, and the compression and decompression algorithms themselves

are very fast.

•	 Physical database design complications: he fact that traditional DBMSs ofer so many diferent auxiliary

structures and access methods (see DBMS implementation complexity above) means that physical database

design in such a system can be a very diicult task—especially since there are few solid guidelines for

choosing between physical design alternatives. he TR structures directly address this problem, too, again by

eliminating unnecessary physical design options.

•	 Reorganization and tuning: Following on from the previous point, traditional DBMSs typically require both

(a) periodic physical database reorganization, and (b) constant tuning and retuning, in order to meet a

variety of performance goals. he need for such reorganization and tuning is greatly reduced in TR—even

eliminated altogether, in many cases.

Note: In connection with the foregoing, it’s worth mentioning that Codd himself is on record as stating (in

reference [8]) that one of his objectives in introducing the relational model in the irst place was “to simplify

the potentially formidable job of the database administrator.”6 And, while it might be argued that the database

administrator’s job in today’s SQL systems is simpler than it was in preSQL systems, I don’t think anyone

could reasonably claim that those SQL systems make that job easy. And it seems to me that the root cause of

the problem is the direct-image style of implementation still found in those systems. he relevance of TR to

Codd’s objective is obvious.

•	 Logical database design complications: As I said in Chapter 2, physical design considerations should in

principle have no impact on logical design, but in practice they usually do (once again because of the direct-

image style of implementation). As a particularly egregious example, how oten have we been told that we

must “denormalize for performance”? As I’ve written elsewhere [27], denormalization (or something akin

to denormalization, at any rate), if it must be done, should be done at the storage level, not the user level,

but the almost one-to-one relationship between those two levels in conventional DBMSs has meant in

practice that denormalization is invariably done at the user level too. As noted in Chapter 12, by contrast,

in TR there’s no need to denormalize at the user level at all, thanks primarily to the fact that joins are so

fast. Hence, we can—at last—achieve the beneits of properly normalized designs, without having to pay any

associated performance penalty. (As for denormalizing at the storage level, in TR the question doesn’t even

arise, because TR doesn’t physically store relations, as such, at all.)

•	 Query ineiciencies and overheads: As explained in Chapter 2, the ineiciencies and overheads in question

both occur because of the access path selection process. Since TR largely eliminates that process, the

problem goes away.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

259

The Future Looks Bright Ahead

•	 Update ineiciencies and overheads: he ineiciencies and overheads that occur with queries because of the

access path selection process go away here too, for the same reason. Also, I noted earlier that indexes and

other auxiliary structures slow down the update process; since TR has no such structures, that problem goes

away too.

•	 Data independence: See the discussion in Section 15.2.

— ◆ ◆ ◆ ◆ ◆ —

Next I’d like to pull together a few miscellaneous points (they’re mostly repeats of points I’ve already made elsewhere, but

I’d still like to include them explicitly here):

•	 Symmetric performance: I explained in Chapter 5 that the relational model provided “symmetric exploitation”

but that implementations prior to TR didn’t provide any comparable symmetry in performance. But TR—

even if it doesn’t provide symmetry in performance 100 percent—certainly comes much closer to doing

so than previous approaches ever did. his is because the TR data representations are themselves very

symmetric in nature. To my mind, this fact is a virtue in itself—it adds an element of “rightness,” as it were.

As George Polya says (admittedly in a rather diferent context) in his book How to Solve It [62]: “Try to treat

symmetrically what is symmetrical, and do not destroy wantonly any natural symmetry.” I’ve always found

this advice of Polya’s a most valuable precept to follow in my own work on the relational model and related

matters.

•	 High performance: Of course, TR doesn’t just provide symmetric performance, it provides very good

performance, too. Indeed, I opened Chapter 1 by saying that somebody had at last implemented the go

faster! command, and we could now build DBMSs that were “blindingly fast.” What’s more, the performance

advantage of TR over traditional systems increases dramatically with the complexity of the query; the more

complex the query, the greater the gain (see Chapters 5 and 10). However, I would hope by now that you

realize that high performance is only one of the many beneits that TR technology can provide. Certainly it’s

a critically important beneit, but, to say it again, it’s not the only one.

•	 Join performance: In connection with the performance issue, I really have to repeat this particular point,

because it’s so signiicant (I’m tempted to say staggering): Joins involve linear instead of multiplicative

performance costs (in other words, joins are scalable). As I said before, this fact by itself is suicient in my

opinion to place TR in a class of its own, quite apart from all of its other advantages.

•	 Update performance: We saw in Chapter 6 that the TR transforms don’t imply good performance for retrieval

at the expense of update; update performance is good, too.

•	 Direct end-user access: If performance is no longer an issue, then (as noted in Chapter 1) there’s no need for

the IT department to keep end-users shut out from their own data. In other words, end-users should be able

to access the database directly for themselves, without having to go through the potential bottleneck of the

IT department.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

260

The Future Looks Bright Ahead

•	 Concurrency control: Now this is a topic I haven’t discussed in this book at all, prior to this point; nor do

I mean to get into a detailed discussion of it at this late juncture. he fact is, however, the TR internal

structures form a good basis on which to implement sophisticated locking techniques, including (though

not limited to) techniques that—like the retrieval and update operations discussed in the body of the book—

essentially operate at the level of individual ields instead of records. What’s more, locks are typically held for

a much shorter time, precisely because queries and updates are so fast.

— ◆ ◆ ◆ ◆ ◆ —

Let me conclude this review of TR beneits with one more item from the TR documentation (it’s based on some remarks

in an internal document, but I’ve edited those remarks considerably here). I think it pretty much speaks for itself.

With traditional DBMSs, the database administrator’s job typically involves a complicated balancing act among

four independent sets of requirements:

•	 Query performance: We want queries to perform well.

•	 Update performance: We want updates to perform well, too.

•	 Storage space: We want to keep the physical size of the database within reasonable bounds.

360°
thinking.

© Deloitte & Touche LLP and affiliated entities.Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Go Faster!

261

The Future Looks Bright Ahead

•	 Optimizability: Given that traditional optimizers are far from perfect, we want to stay within the bounds of

what the optimizer can reasonably be expected to handle.

he trouble is, although the requirements are independent, the mechanisms for meeting them in conventional

DBMSs typically aren’t. But TR is diferent—TR replaces the usual series of vexing tradeofs with dramatic

improvements in all of these areas simultaneously.

15.5 Possible Future Developments

In this section, I’d like to speculate briely about possible future applications of TR technology as I’ve described it in previous

chapters. However, I must immediately make it clear that everything that follows is my opinion only; in particular, I’m

categorically not “preannouncing” any TR products, nor am I disclosing anything from any of the follow-on patents. Rather,

I just want to describe what might be thought of as a “future directions wish list” on my own part. What’s more, I strongly

suspect that some of the items in the list will require certain extensions to the TR model as described in previous chapters.

In a way, just about everything I want to say in what follows can be regarded as part of the same overall point:

Let’s implement the relational model!

In other words, it’s my belief that if we were to build a true relational DBMS, as Hugh Darwen and I have advocated in

he hird Manifesto [40]—and I’ve tried to suggest all through this book that TR technology would be ideally suited to

that task—then we would at least have the right framework for implementing all of the other items that I indicate below

might be desirable. In fact, I want to go further; I want to suggest that trying to implement those desirable items in any

other kind of framework is likely to prove more diicult than doing it right.7

Be that as it may, a true relational system would include direct support for all of the relational operators discussed in

Chapter 10 and others besides, including at least attribute rename, semijoin, semidiference, compose, and transitive closure

(TCLOSE).8 It would also include direct, comprehensive, and systematic—that is, not ad hoc—support for relational

comparisons (for example, the ability to test whether two relations are equal, whether one is a subset of another, and so on),

integrity constraints, and view updating. All of these matters are discussed in detail in one or both of references [32] and [40].

Now, one aspect of the relational model that’s very widely misunderstood is the following (and this observation is relevant

to just about everything else I want to say in this section):

he relational model has absolutely nothing to say regarding the nature of the types over which relations are deined.

In particular, although people tend to think of those types as being very simple—integers, character strings, and so

forth—there’s absolutely nothing in the relational model that requires them to be limited to such simple forms. hus, we

might have an “audio recordings” type, a “geographic map” type, a “video recordings” type, an “engineering drawings”

type, a “legal documents” type, a “geometric objects” type, and on and on.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

262

The Future Looks Bright Ahead

Relation types are an extremely important special case of the foregoing. hat is, the system should support types whose

values are relations, and therefore should also support relations with attributes of such types; in other words, it should

support relations with attributes whose values are relations in turn (“relation-valued attributes”). A simple example is

given in Fig. 15.3.

Fig. 15.3: A relation with a relation-valued attribute

Note: You might have encountered claims in the literature to the efect that relation-valued attributes violate the requirements

of normalization (indeed, I’m on record as having made such claims myself—in earlier editions of reference [32] in

particular). Such claims are incorrect, however. See reference [32] for further explanation.

Support for relation-valued attributes involves among other things support for operators, called group and ungroup in

references [32] and [40], for mapping between relations without such attributes and relations with them. Also, it turns

out that relation-valued attributes are important, at least conceptually, in connection with temporal database support (see

the paragraphs immediately following).

Interval types are another important special case of types in general. In particular, such types provide the basis for proper

temporal database support (which is a crucial aspect of data warehouse systems, albeit one that hasn’t yet been implemented

in existing data warehouse products so far as I know). For example, Fig. 15.4 gives an example of a temporal relation; that

relation is supposed to show that certain suppliers supplied certain parts during certain intervals of time (you can read

d04, d06, etc., as “day 4,” “day 6,” etc.; likewise, you can read [d04:d06] as “the interval from day 4 to day 6 inclusive,”

etc.). DURING in that relation is an example of an interval-valued attribute. Note: he similarity between those DURING

intervals and the row ranges discussed elsewhere in this book isn’t entirely coincidental.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

263

The Future Looks Bright Ahead

Fig. 15.4: A relation with an interval-valued attribute

Support for interval-valued attributes (and hence for temporal databases) involves among other things support for

generalized versions of the usual relational operators. For reasons that need not concern us here, those generalized operators

are referred to in reference [42] as “U_” operators; thus, there’s a U_restrict operator, a U_join operator, a U_union operator,

and so on. Note: hose “U_” operators are all deined in terms of two new relational operators called pack and unpack,

and those latter operators in turn are deined in terms of relation-valued attributes. As already noted, therefore, support

for interval-valued attributes relies on support for relation-valued attributes, at least conceptually. Again, see reference

[42] for further discussion.

As reference [42] also explains, proper and complete temporal database support additionally requires proper support for

type inheritance.9 hus, I would like to see TR technology used, not just to implement the relational model as such, but

also to implement the type system—including the inheritance portions of that system—deined for the relational model

in reference [40]; in fact, I would argue that the type system in question must be implemented if temporal databases are

to be supported properly and completely.

Of course, proper type support certainly includes support for user-deined types (see the earlier remarks regarding an

“audio recordings” type, a “geographic map” type, etc). In fact, I’ve been assuming such support throughout this book—

recall the user-deined types S#, NAME, and so on—but I haven’t made a big deal of it. So let me do so now:

•	 he irst point is that user-deined type support is the sine qua non—at the user or logical level, in fact, it’s

the sole distinguishing feature—of the so-called “object/relational” DBMSs (which in my opinion are, or at

least ought to be, just relational DBMSs anyway; once again, see reference [40] for further discussion). hus,

if we use TR technology to build a true relational DBMS, we will necessarily have included full user-deined

type support (for otherwise the DBMS wouldn’t be a true relational DBMS, by deinition), and so we will

in fact have built an “object/relational” DBMS. Indeed, the term “object/relational” is little more than a

marketing term anyway; it’s needed only because the term “relational” has, sadly, been usurped (some might

say destroyed) by SQL.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

264

The Future Looks Bright Ahead

Perhaps I should mention one particular challenge that arises in connection with the foregoing. he fact is,

some user-deined types have values that are very large and require a lot of storage (think of the type “video

recordings,” for example). Dealing with such types satisfactorily in a TR environment (or any other environment,

come to that) looks like it might be an interesting implementation problem.

•	 Of course, user-deined type support includes user-deined operator support, too; that is, if we can deine

our own types, we must be able to deine our own operators as well, because types without operators are

useless. In particular, we must be able to deine our own operators in connection with system- as well as

user-deined types. Note: Reference [40] in fact insists on the provision of certain operators (with prescribed

semantics) in connection with every type: “=” (equality comparison), “:=” (assignment), certain “selector”

and “THE_” operators, and a few others. But, of course, the user is at liberty to deine additional ones as

well.

•	 Not all types—in particular, not all user-deined types—are “ordinal” types; that is, some types have no “<”

operator deined for them, and hence have no logical ordering to their values. An example might be the type

“geometric points in three-dimensional space”; clearly, it makes no sense to say that some point p1 is less

than (or greater than) some other point p2. So what can we do about about columns that correspond to such

types in the Field Values Table? (Recall that columns in that table are generally supposed to be kept in sorted

order.)

Well, every type does at least have an “=” operator, even if it has no “<” operator, so at least we can always

carry out the column condensing and merging described in Chapters 8 and 9, even if the columns aren’t sorted

as such. What’s more, even for a type with no “<” operator, the implementation is always free to deine a “<”

operator for the internal (bit-string) representation of values of the type in question—so the Field Values Table

columns can still be sorted (and binary searches can still be used), even if the ordering in question has no

meaning at the user level.

Finally, I note that one type that’s currently important (or at least fashionable) in the commercial world is the type XML

document. And it seems to me that TR technology is particularly well suited to supporting such a type, because:

a) XML documents have a structure that’s intrinsically hierarchic in nature;

b) Hence, given that joins are so fast in TR, it might make sense to map diferent hierarchic levels of a given

XML document to diferent relations under the covers, and then to reconstruct the XML document as seen

by the user by means of suitable joins, as and when required.

he TCLOSE operator mentioned earlier might be relevant here; so too might be relation-valued attributes.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

265

The Future Looks Bright Ahead

Endnotes

1. he term scalability isn’t very precisely deined in the literature, but to say something is scalable is basically

just jargon for saying costs are linear. Here are two examples: (a) If hardware capacity and data volume

are both increased by the same factor, then query response times should remain constant; likewise, (b) if

hardware capacity and number of users are both increased by the same factor, then again query response

times should remain constant.

2. I don’t want to give the impression that “doing the heavy liting at load time” implies that load performance

must be bad in TR—it isn’t. In fact, TR load times aren’t all that diferent from load times in a conventional

system, because it’s the data read/write time that tends to dominate the process in both cases.

3. hanks to Steve Tarin for suggesting this analogy.

4. To be more precise, it provides that functionality when considered in conjunction with the S# column of the

Field Values Table, which contains the pertinent data values.

5. We saw a couple of examples (but only a couple!) in Part III of this book: Somebody has to choose

characteristic or core ields, and somebody has to specify what if anything is to be redundantly stored. Note,

however, that both of these decisions do at least have some potential for automation.

6. A summary and discussion of all of Codd’s stated objectives for the relational model can be found in

reference [35], Chapter 12.

7. To quote Gregory Chudnovsky, well-known mathematician and a member of the Required Technologies

Scientiic Advisory Board: “If you do it the stupid way, you will have to do it again” (from an article in he

New York Times, December 24th, 1997).

8. TR technology should be particularly good for implementing TCLOSE, since (a) that operator consists

essentially of an iterated compose, (b) compose in turn consists of a join followed by a projection, and (c) we

already know that TR is good at joins and projections.

9) Of course, I’m well aware that type inheritance is supported in several commercial products already. In my

opinion, however, most if not all of those implementations are logically lawed! his is not the place to get

into details; if you want to know more, see reference [40].

http://bookboon.com/

